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Introduction

Since the invention of the microscope in 1595 [1], the discovery of 

fluorescence and the first description of light microscopy in visualizing 

stained samples in the 1850’s [1], widefield (WF) fluorescence microscopy 

has become a widely used imaging technique that has benefited the 

disciplines of engineering and science.

Our scientific curiosity continues to drive the development of microscopy 

forward, with the goal to see and resolve more structural detail. However, 

due to the wave nature of light and the diffraction of light by optical 

elements, image resolution is limited by the diffraction spot known as the 

diffraction limit. 

In WF fluorescence microscopy both the contrast and resolution of a 

captured image is reduced by multiple sources including: light collected 

from adjacent planes, scattered light, and camera sensor noise, all of 

which increase image haze/blur (background noise). Additional losses in 

image resolution and contrast can be tied to the systems optical response 

function commonly known as the point spread function (PSF). The PSF 

describes what an idealized point source would look like when imaged at 

the detector plane and operates as a low pass frequency filter that filters 

out the high spatial frequency content in the image, Figure 1. 

Mathematically, image formation (i) can be represented as a convolution 

(*) between the observed object (o) and the PSF (h) with added noise 

(Poisson and/or Gaussian - ε ) as described by Eq 1:

i(x, y, z) = o(x, y, z) * h(x, y, z) +  ε   Eq 1.

To minimize the effects of decreased image contrast and resolution by the 

PSF, image restoration techniques such a deconvolution are often used to 

restore and enhance the detail that is lost in the image. 

Figure 1. The convolution of an object with the systems optical response 
(PSF) results in a blurred image. The original image (a) was corrupted 
with gaussian noise (b) and convolved with a synthetic PSF (2D Gaussian 
function) (c) resulting in the blurred image shown in (d).  (e) and (f) Depicts 
the image in the frequency domain pre- and post-convolution. The 
convolution of the image with the PSF operates as a low pass frequency 
filter and removes some of the high spatial frequency content in the image (f 
– red arrows; compare with e – red arrows).  The images were produced in 
Matlab 2020a (MathWorks, Natick MA), and the test target was taken from
https://en.wikipedia.org/wiki/1951_USAF_resolution_test_chart.
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What is Deconvolution?

Deconvolution is a computational method used to restore the image 

of the object that is corrupted by the PSF along with sources of noise. 

Given the acquired image i, the observed object o, and knowledge of the 

PSF (theoretically or experimentally determined) the observed object in 

Eq 1. can be restored through the process of deconvolution. To perform 

deconvolution, the object and the PSF are transformed into the frequency 

domain by the Fourier transform as presented in Eq 2.

o(x, y, z) * h(x, y, z) = F –1 [F{o(x, y, z)}F{h(x, y, z)}   Eq 2.

For computational reasons, deconvolution is performed in the frequency 

domain, and Eq 1. can be re-written as shown in Eq 3. and solved for O:

I ⁄ H = OH ⁄ H + £ ⁄ H    Eq 3.

where F, F –1, O, H, and £ are the Fourier transform, the inverse 

Fourier transform, the Fourier transformed observed object, the Fourier 

transformed PSF (known as the optical transfer function; OTF) and the 

Fourier transformed noise. However, as H approaches zero (at the edges 

of the PSF), both the left-most term and the noise term in Eq 3. become 

increasingly large, amplifying noise and creating artifacts. To limit the 

amount of amplified noise, the PSF can be truncated, but this will result in 

the loss of image detail.

Several deconvolution algorithms have been proposed [2-8] to address 

the above image restoration issues. For instance, the Richardson Lucy 

(RL) algorithm based on a Bayesian iterative approach is formulated using 

image statistics described by a Poisson or Gaussian noise process. By 

minimizing the negative log of the probability [2,3], the RL equation for 

deconvolution for Poisson and Gaussian noise processes are, Eq 4: 

 ok+1 = ok   for Poisson [2,3] and

ok+1 = ok + [(h+ * i) – (h+ * h) *ok ]   for Gaussian [10]   Eq 4.

where i, and o have been previously defined, and h+ is the flipped PSF. 

However, similar to Eq 3. the RL deconvolution method is susceptible to 

amplified noise, resulting in a deconvolution that is dominated by noise 

[2,3], Figure 2. Partial treatment to limit amplified image noise is to either 

terminate the convergence early, or to carefully select a value for ok that 

is pre-blurred with a low pass frequency filter (ex. Gaussian filter) [2,3]. 

More recently, new deconvolution methods have been proposed that use 

a regularization term that can be added to the algorithm that constrains 

the deconvolution. Such regularization techniques include methods like 

Tikhonov-Miller, Total-Variation, and Good’s roughness [2,4-9]. The purpose 

of these regularization terms is to penalize the deconvolution to limit image 

noise and artifact generation with the goal to preserve image detail.

h+*
i

(h*ok )[ ]

Figure 2. The RL deconvolution 
algorithm was used to restore 
the image of the observed object 
(resolution target pattern). The 
observed object to restore is the 
blurred image shown in Figure 1(d), 
and the PSF used in the deconvolution 
was the synthetic PSF in Figure 1(c). 
As the number of iterations increase, 
(a-c), the image detail is improved. 
However, this is at the expense of 
amplified noise and image artifacts.
The images were produced in Matlab 
2020a (MathWorks, Natick MA).

FIGURE 2
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Leica Microsystems Approach

The method used by Leica Microsystems is an accelerated adaptive RL 

approach that is regularized and constrained using Good’s roughness [11]. 

Using a Bayesian statistic approach with a Gaussian noise process, the 

function to minimize for deconvolution is:

min ||i – h * o||2 + γ ∫ 1 [∇o]2   Eq 5.

where γ is the regularization term, ∇ is the differentiation operator, and h 

is the Gibson-Lanni PSF. In Eq 5., the regularization term, γ, is dependent 

on the local signal-to-noise ratio (SNR) and is a function of adaptive 

SNR (x, y) coefficients created over the entire image, Figure 3. Together, 

γ∫1[∇o]2, acts to penalize the deconvolution, and the regularization term 

scales non-linear with SNR (x, y) as:

with SNRmax defined as a predetermined maximum SNR value, and 
γmax is the maximum predefined regularization. The result is the adaptive 

regularization of Eq 5., yielding greater penalization to the deconvolution 

for regions having lower SNRs in contrast to regions with higher SNRs.

This yields a deconvolution process that is properly regularized over the 

entire image avoiding image artifacts and the amplification of noise. 

Using the deconvolution algorithm offered by Leica Microsystems the user 

can define the number of iterations for deconvolution or use the default 

option to have the algorithm determine the stop criterion for convergence. 

The latter option is more time efficient, and removes the guesswork 

required by the user. Similar to Leica Microsystems Instant Computational 

Clearing (ICC) algorithm, the described adaptive deconvolution method is 

included on all THUNDER imaging systems and is fully integrated into the 

imaging workflow [12]. 

0

Figure 3: By viewing the image (a) as a heat-map of low SNR (black/purple) to high SNR (orange/
red) local adaptive coefficients are created over the entire image to (b) regularize and constrain the 
deconvolution. The figure was adapted from https://downloads.leica-microsystems.com/Leica%20
TCS%20SP8/Publications/LIGHTNING_WhitePaper.pdf
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SNRmaxγ(x,  y ) = max   0,  
γmax [1 – arctan ] Eq 6.
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THUNDER: ICC and Deconvolution

How well deconvolution performs on a widefield fluorescent image is 

dependent on several factors including the amount of light collected from 

adjacent planes, the sample thickness, the degree of scattered light, and 

the SNR of the image. For instance, in thick specimens an appreciable 

amount of light scattering can occur within the sample resulting in the 

failure of deconvolution to produce a restored image with improved 

resolution and contrast. 

For samples that have high SNR with minimal background noise, 

deconvolution can yield over processed images resulting in unwanted sharp 

boundary transitions between image features. Therefore, the need for an 

imaging workflow that is adaptable for diverse sample thicknesses with 

varying SNRs is important. 

In our previous technology brief we discussed Leica Microsystems ICC 

algorithm as a method to restore image contrast through the removal of 

background noise. This is done through the minimization of a non-quadratic 

cost function that estimates and subtracts the background noise from the 

image to improve contrast [12]. To address the previously mentioned pitfalls 

of deconvolution, Leica Microsystems introduced a workflow that combines 

both computational algorithms, allowing users to perform ICC, or ICC with 

deconvolution. For the latter, the pairing is selectable between two different 

processing modalities based on the sample thickness and SNR, referred to as 

small and large volume computational clearance, SVCC and LVCC respectively. 

label a and b

Figure 4: (a) A low SNR widefield fluorescent image of a U2OS cell stained with SiR700 actin. Due to the 
low SNR, the true spatial features are difficult to differentiate due to the background noise. (b) While 
the application of ICC improves the overall image contrast, the structural signal is still obscured and is 

at the signal level of the background noise. (c) After SVCC the image and its features are enhanced over 
the background noise resulting in an image having improved contrast and resolution with increased SNR. 
Scale bar = 50 µm. Images courtesy of James Marr, PhD, from a sample supplied by Leica Microsystems.

FIGURE 4
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Figure 5:  A 70 μm widefield z- stack of an uncleared mouse lung tissue for studying type I alveolar 
epithelial cells. The differentiation marker, colored cyan, labels AT1 lineage, and the magenta label 
identifies the receptors for advance glycation end products (RAGE). (a) A single z-plane at a depth 
of 52.25 μm was selected from the widefield raw image. Despite the z-plane having good SNR, the 
structural features of interest are obscured in the background noise. (b) After applying ICC (region 

within the red box) the background noise is removed, however, the spatial features are not fully 
recovered. (c) Only after LVCC are the features recovered, resulting in an image with increased SNR, 
contrast and resolution. This is true for all z-planes within the 70 um z-stack. Scale bar = 50 µm. 
Images courtesy of Yana Kazadaeva, in Dr Tushar Desai lab, California. 
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When using SVCC, the adaptive deconvolution is performed prior to THUNDER 

ICC. In SVCC, a theoretical PSF is used in the deconvolution with knowledge 

of the systems optical parameters (the type of microscope objective, the 

emission wavelength, the sample embedding media, etc.). The choice in using 

SVCC is especially important for ‘noisy’ images, Figure 4, since the adaptive 

deconvolution will improve the SNR prior to the automatic removal of the 

unwanted background via ICC, Figure 4C.

In LVCC, ICC is performed prior to deconvolution and uses a PSF that is 

influenced by the parameters of ICC. LVCC is ideally suited for samples that 

have higher SNRs and more background noise contributions that are common 

in thick samples, Figure 5. By performing ICC prior to deconvolution, the 

contrast of the spatial features is enhanced, Figure 5C, allowing for a more 

precise treatment of the remaining signal through deconvolution. 

For both SVCC and LVCC, the strength of ICC is user adjustable. The 

strength parameter (s) scales the amount of estimated background 

intensity (Ibackground) that is subtracted from the image (I) resulting in the 

final image (I'):

I' = I – s • Ibackground   Eq 7.

Together the strength parameter, SVCC, and LVCC allow the user to fine 

tune the computational algorithm to their sample for the best treatment 

of their data.

As with ICC, both SVCC and LVCC can be applied during image acquisition 

or post-acquisition, with the raw data always being preserved. This means 

that the user can directly compare the raw data to the processed data for 

further quantification. The topic of quantification will be discussed in our 

next upcoming technology brief.



ADAPTIVE DECONVOLUTION WITH COMPUTATIONAL CLEARING 7

Acknowledgements:

We would like to thank Kai Walter (Software engineer), Louise Bertrand 

(Product Performance Manager Widefield) and Jan Schumacher (Advanced 

Workflow Specialist) for reading and providing their comments on this 

technical brief.

References:

1. Heinrichs, A. (2009, October 1). (1858, 1871) First histological stain, 

Synthesis of fluorescein. Retrieved November 09, 2020, from https://www.

nature.com/milestones/milelight/full/milelight02.html

2.  Sibarita, J. (2005). Deconvolution Microscopy. Microscopy Techniques 

Advances in Biochemical Engineering/Biotechnology, 95, 201-243. 

doi:10.1007/b102215

3.  Dey, N., Blanc-Féraud, L.,  Zimmer, C., Roux, P.,  Kam, Z.,  Olivo-Marin, 

J.,  Zerubia, J. (2004). 3D Microscopy Deconvolution using Richardson-Lucy 

Algorithm with Total Variation Regularization.

4.  Rodriguez, P.,. (2013). Total Variation Regularization Algorithms for 

Images Corrupted with Different Noise Models: A Review. Journal of 

Electrical and Computer Engineering. 2013. 10.1155/2013/217021.

5.  Tao, M., Yang, J. (2009). Alternating direction algorithms for total 

variation deconvolution in image reconstruction. Optimization Online.

6. Roysam, B., Shrauner, J. A., Miller, M. I., (1988) Bayesian imaging 

using Good's roughness measure-implementation on a massively parallel 

processor, ICASSP-88., International Conference on Acoustics, Speech, and 

Signal Processing, New York, NY, USA, , pp. 932-935 vol.2, doi: 10.1109/

ICASSP.1988.196742.

7.  Verveer, P., Jovin , T., (1998) Image restoration based on Good’s 

roughness penalty with application to fluorescence microscopy, J. Opt. Soc. 

Am. A 15, 1077-1083 

8.  Zhu, M., (2008). Fast Numerical Algorithms for Total Variation Based 

Image Restoration, [Unpublished Ph.D. dissertation] University of 

California, Los Angeles.  

9.  Good, I., & Gaskins, R. (1971). Nonparametric Roughness Penalties for 

Probability Densities. Biometrika, 58(2), 255-277. doi:10.2307/2334515

10.  Oyamada, Y. (2011). Richardson-Lucy Algorithm with Gaussian noise.

11.  D. Zeische, F. and Walter, K., Leica Microsystems CMS GmbH, 

Deconvolution Apparatus and Method Using a Local Signal-to-Noise Ratio, 

Germany, 18194617.9, 14.09.2018.

12.  Felts, L., Kohli, V., Marr, J., Schumacher, J., Schlicker, O. (2020, October 

01). An Introduction to Computational Clearing. Retrieved November 

09, 2020, from https://www.leica-microsystems.com/science-lab/an-

introduction-to-computational-clearing/ 

https://www.nature.com/milestones/milelight/full/milelight02.html
https://www.nature.com/milestones/milelight/full/milelight02.html
https://www.leica-microsystems.com/science-lab/an-introduction-to-computational-clearing/
https://www.leica-microsystems.com/science-lab/an-introduction-to-computational-clearing/


Leica Microsystems CMS GmbH | Ernst-Leitz-Strasse 17–37 | D-35578 Wetzlar (Germany)

Tel. +49 (0) 6441 29-0 | F +49 (0) 6441 29-2599

www.leica-microsystems.com/thunder

MC-0001965–27.01.2021. Copyright © 2021 Leica Microsystems CMS GmbH, Wetzlar, Germany. All rights reserved. Subject to modifications. LEICA and the Leica Logo 
are registered trademarks of Leica Microsystems IR GmbH.

www.leica-microsystems.com

Cover image: Mouse kidney section with Alexa Fluor™ 488 WGA, Alexa Fluor™ 568 Phalloidin, and DAPI. Sample is a FluoCells™ prepared slide #3 from Thermo Fisher Scientific, Waltham, MA, USA. 
Images courtesy of Dr. Reyna Martinez – De Luna, Upstate Medical University, Department of Ophthalmology and Visual Back cover image.

Back cover image: Adult rat brain. Neurons (Alexa Fluor488, green), Astrocytes (GFAP, red), Nuclei (DAPI, blue). 
Image courtesy of Prof. En Xu, Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, China

CONNECT

 WITH US!


